跳至主要內容

文章

顯示包含「生成式AI使用記錄」標籤的文章

生成式AI使用記錄-翻譯

翻譯是一門專業工作,它不只是把另一種語言轉化為日常生活的語言,而是轉化為人人看得懂、聽得懂的語言。在學習的過程裡,老師說過翻譯重視「信、達、雅」,這是一門學問,不是任何一個人、哪種工具可以取代的。這篇不是在談「翻譯」的學問或是翻譯會不會被人工智慧取代,我也不是專業翻譯,沒有能力談這門學問,我只能分享AI在工作上的協助。 因為工作需要閱讀大量的國外文獻,或是參與會議中有大量的英文文獻需要閱讀,Google Translate提供許多協助,同時利用使用者協助修正翻譯的正確度,甚至減少大量閱讀的時間。 隨時間的增加,坊間也愈來愈多更好的翻譯軟體,但遇到會議的錄影與錄音轉譯,還是需要由專業的翻譯公司協助,以節省時間成本,人員可以把時間專注在自己的事業上,遇到需要節省金錢成本時,就會折衷由一般人員來譯出可以接受的成果。 直到 ChatGPT 出現,我拿它來翻譯會譯的逐字稿,它協助節省金錢成本與時間成本,雖然增加編輯成本,但隨著模型逐漸進步,訓練的人愈來愈多,它也會提高準確度,並藉由一次又一次的對話往來,產出比用 Google Translate更能讓人容易接受的版本。相對的,它還是增加使用人員需要編輯、審核的時間成本。但有沒有比人類編輯好?我想現階段,中文可能還有沒比人類編輯好的程度,但已經可以是能接受、初步可以讀懂文字要表達的粗略意思的程度,離「信、達、雅」的標準還很遠。 以往的少見文字,如藏文、閃語、印度語,甚至連死海古卷裡的文字都已經可以藉由AI技術辨識出來,已經是非常大的進步。有天我使用AI翻譯藏文時,突然想到,誰可以幫我核對翻譯出來的正確性?我個人是不懂藏文的,當我想把中、英文用AI翻譯為藏文時,又能請誰幫我確認文法與用字的正確性呢? 所以,使用者本身也是需要一定程度,才能辨識AI結果的正確性,有無過度編撰或錯誤的引用,例如在法規上的引用、宗教信仰經典裡的人物及故事,會不會在一來一往中給AI產生幻覺(Hallucination)的機會。又如同專業的翻譯人員並不是完全了解各行各!業中的知識,工作過程中還要再與委託者討論。又如有次我聽到一場會議的講者,他提到他是專業的執法人員,但是否判定對方有無違法,還需要了解該行業的專業知識,例如建築業、畜牧業,甚至要去了解飼料的投餵方式與成份。所以現階段,AI還是無法取代人類,也無法代替法官做出判決,大概也是短期內的一件好事吧! I...

生成式 AI 使用記錄 -- Deep Research

當OpenAI將Deep Research先開放給 ChatGPT Pro 的使用者後,已經有一群使用者驚訝於它的產出,沒多久,OpenAI已 開放給付費的使用者 來使用 Deep Research功能,讓更多人都能受惠於這套功能帶來的方便。 當我在 ChatGPT 裡使用 Deep Research 讀完我幾年來處理的文件、寫的報告內容後,它依這些資料產出的速度相當快,除了可以搜尋網路文章外,也同時參考我所上傳的資料。因為已經讀過我整理過一次或經過多次編修的內容,所以產出成果也有一定的品質。 這樣的發展促使我思考「知識工作者」是否可能真的被取代?科技進步就是不斷的在縮短資訊落差,減少因為資訊落差造成的不平等,但仍有可能因為運用資本的程度不同而產生不平等。 就現階段來說,使用者要讓生成式AI按提示語(Prompt)工作,取得高品質且符合需求的資料、辨識產出的成果是否存有虛構的內容,都需要依賴使用者本身對該領域的專業程度,才能寫出正確的提示語。在我今天的操作過程中,如果沒有先前累積的知識,可能也無法讓AI開始工作。 知識工作者在未來,存在的意義可能會像「翻譯」一樣,將客戶的需求「翻譯」為指令,限縮這些生成式AI在搜尋的範圍,提高產出的準確率及品質,減少內容的幻覺,,也像一個具基本能力的「編輯」,編修文章中的字句,更貼近「人類」的語言,或客戶需求的專業語言,而不是像機器一般的語言。 Deep Research 不僅縮短產出文章的時間,還沒有創作者在產出文章時的陣痛期,例如面對排山倒海的資料確不知從何處開始著手整合,又或是完全不知道要去哪裡找資料,又該從哪裡開始。在對話的過程裡,生成式AI也會一起把範圍縮小,讓目標更明確,也是不錯的協助。