跳至主要內容

BFR Level 2心得(1)

*

在上了兩天的巴哈花精Level 2課程,說實在有點累,尤其是作息日夜顛倒的我,一下子要在早上七點醒來連上八個小時的課,星期日因為晚上有另一個課程所以是要撐到晚上十點,都快瘋狂了,更瘋狂的是,我居然無聊到在BBS站裡跟人吵架。

吵架的理由就不說了,大哥後來知道這件事,有人跟他說在網路上有個店裡的客人罵人罵得兇,我不知道說的是指我還是指其他人,我承認在發作時會罵得很兇,但也要看對方的接受度是多少。大哥的結論是:「咖啡沒有人就沒有生命。」

就此打住,我們來談談Level 2的BIEP課程。

在Level 1證書拿到以後,不斷困擾沒有錢去英國學巴哈花精,畢竟這是英國的課程且曾寫信詢問會不會在台灣開設相關課程但只得到「未來也許會」的答案。然後我就收到了張老師的信,她說台灣的代理商會請日本的老師來開Level 2的課程。聽到這個消息當然是很開心,也順便請教承辦人員看是否可以團報,爭取到對方說只要找到五人以上報名的話,就可以每個人退五百元,結果聲音太小,加上原先的條件限制,變成只有我一個人報名,但現場卻有十五個和我一樣是DLP函授課程的學生,真是扼腕。

兩天的課程都是由日本的Saodah Hayashi老師以英文上課。大概會有人質疑日本人的英文台灣人聽不聽得懂?除了一些專業的醫療名詞外,沒有其他的溝通問題,她講的英文,我能聽懂,所以沒什麼注意中文翻譯在說什麼,只是有時覺得中譯內容和英文有些出入,比方說,Saodah老師表示她比較習慣在日本上課,因為她可以日文教學也能掌握全場的狀況,她知道學生是不是聽得懂,所以可能來台灣上課的機會不高,但中譯人員是說,會努力鼓勵老師再來台灣開課。

上課地點在台北市的一間管理顧問公司的教室,總共有三十四個學員,有十五個是DLP(函授課程)學員,十九個則分別屬於之前Saodah老師開課的Level 1的學生以及由該公司老闆娘上課的學生。這兩天的午餐都是由開課的代理商所訂購,值得稱許的是,因為我是訂素食午餐,本來擔心會吃不下去,不過,他們訂的便當都非常好吃。我不是素食主義者也挺愛吃肉的,完全是怕睡著所以才吃素。課程中是發生一些小缺點,但瑕不掩瑜,該反應的也反應了。

Saodah老師人非常親切和藹,無論何時都是帶著微笑,而且非常的準時,和日本人很守時的刻板觀念中是符合的。第一天上課因為有些人凌晨才從台中或花蓮等地坐車,所以稍微遲到了,老師在第一天課程結束前特別提醒學生一定要準時,第二天上課,老師準時到達教室上課時,大家也都準時進入教室。

第一天大家彼都有些生疏,第二天中午休息時,老師來到我們這桌和同桌的一位家醫科的鄭醫生談話,她非常客氣的和鄭醫生交換使用花精的心得,也提供了日本的一些案例給醫生。我覺得十分幸運,除了我們這桌有一位醫生所以我們可以聽到這些案例外,也因為我們這桌只有五個人,所以日翻中的翻譯妹妹坐在我們這桌,老師在用日文說案例時,便由她翻譯中文給我們,而她是淡江日文系的學妹哦!但因為老師之後又以英文講述案例,所以剛好英日各一個案例,學妹和我分別翻譯一個案例。

當老師知道鄭醫生是家庭醫學科的醫生時,她也很興奮的說在日本也有家庭醫學的醫師,而且有對花精的使用做研究,這兩個案例都是與孕婦使用花精相關的研究。我大概簡單的敘述一下:

案例一:日本有位醫生想知道母親肚子裡的胎兒是否在出生後擁有母親的記憶,比方說母親在懷孕的過程中看到火災,小寶寶出生後是否也擁有母親的記憶?據這位醫生的研究是當母親在懷孕過程中看到火災受到驚嚇,寶寶在出生成長後會有母親受到驚嚇的感覺,醫生也使用急救花精給受到驚嚇的媽媽食用,寶寶在長大後會記得這樣的感覺。這個醫生有把這類的研究出版成書籍,在日本也很暢銷。

隨選歷史閱讀:
Powered by Stuff-a-Blog

留言

此網誌的熱門文章

生成式AI使用記錄-翻譯

翻譯是一門專業工作,它不只是把另一種語言轉化為日常生活的語言,而是轉化為人人看得懂、聽得懂的語言。在學習的過程裡,老師說過翻譯重視「信、達、雅」,這是一門學問,不是任何一個人、哪種工具可以取代的。這篇不是在談「翻譯」的學問或是翻譯會不會被人工智慧取代,我也不是專業翻譯,沒有能力談這門學問,我只能分享AI在工作上的協助。 因為工作需要閱讀大量的國外文獻,或是參與會議中有大量的英文文獻需要閱讀,Google Translate提供許多協助,同時利用使用者協助修正翻譯的正確度,甚至減少大量閱讀的時間。 隨時間的增加,坊間也愈來愈多更好的翻譯軟體,但遇到會議的錄影與錄音轉譯,還是需要由專業的翻譯公司協助,以節省時間成本,人員可以把時間專注在自己的事業上,遇到需要節省金錢成本時,就會折衷由一般人員來譯出可以接受的成果。 直到 ChatGPT 出現,我拿它來翻譯會譯的逐字稿,它協助節省金錢成本與時間成本,雖然增加編輯成本,但隨著模型逐漸進步,訓練的人愈來愈多,它也會提高準確度,並藉由一次又一次的對話往來,產出比用 Google Translate更能讓人容易接受的版本。相對的,它還是增加使用人員需要編輯、審核的時間成本。但有沒有比人類編輯好?我想現階段,中文可能還有沒比人類編輯好的程度,但已經可以是能接受、初步可以讀懂文字要表達的粗略意思的程度,離「信、達、雅」的標準還很遠。 以往的少見文字,如藏文、閃語、印度語,甚至連死海古卷裡的文字都已經可以藉由AI技術辨識出來,已經是非常大的進步。有天我使用AI翻譯藏文時,突然想到,誰可以幫我核對翻譯出來的正確性?我個人是不懂藏文的,當我想把中、英文用AI翻譯為藏文時,又能請誰幫我確認文法與用字的正確性呢? 所以,使用者本身也是需要一定程度,才能辨識AI結果的正確性,有無過度編撰或錯誤的引用,例如在法規上的引用、宗教信仰經典裡的人物及故事,會不會在一來一往中給AI產生幻覺(Hallucination)的機會。又如同專業的翻譯人員並不是完全了解各行各!業中的知識,工作過程中還要再與委託者討論。又如有次我聽到一場會議的講者,他提到他是專業的執法人員,但是否判定對方有無違法,還需要了解該行業的專業知識,例如建築業、畜牧業,甚至要去了解飼料的投餵方式與成份。所以現階段,AI還是無法取代人類,也無法代替法官做出判決,大概也是短期內的一件好事吧! I...

生成式 AI 使用記錄 -- Deep Research

當OpenAI將Deep Research先開放給 ChatGPT Pro 的使用者後,已經有一群使用者驚訝於它的產出,沒多久,OpenAI已 開放給付費的使用者 來使用 Deep Research功能,讓更多人都能受惠於這套功能帶來的方便。 當我在 ChatGPT 裡使用 Deep Research 讀完我幾年來處理的文件、寫的報告內容後,它依這些資料產出的速度相當快,除了可以搜尋網路文章外,也同時參考我所上傳的資料。因為已經讀過我整理過一次或經過多次編修的內容,所以產出成果也有一定的品質。 這樣的發展促使我思考「知識工作者」是否可能真的被取代?科技進步就是不斷的在縮短資訊落差,減少因為資訊落差造成的不平等,但仍有可能因為運用資本的程度不同而產生不平等。 就現階段來說,使用者要讓生成式AI按提示語(Prompt)工作,取得高品質且符合需求的資料、辨識產出的成果是否存有虛構的內容,都需要依賴使用者本身對該領域的專業程度,才能寫出正確的提示語。在我今天的操作過程中,如果沒有先前累積的知識,可能也無法讓AI開始工作。 知識工作者在未來,存在的意義可能會像「翻譯」一樣,將客戶的需求「翻譯」為指令,限縮這些生成式AI在搜尋的範圍,提高產出的準確率及品質,減少內容的幻覺,,也像一個具基本能力的「編輯」,編修文章中的字句,更貼近「人類」的語言,或客戶需求的專業語言,而不是像機器一般的語言。 Deep Research 不僅縮短產出文章的時間,還沒有創作者在產出文章時的陣痛期,例如面對排山倒海的資料確不知從何處開始著手整合,又或是完全不知道要去哪裡找資料,又該從哪裡開始。在對話的過程裡,生成式AI也會一起把範圍縮小,讓目標更明確,也是不錯的協助。

觀察台灣 AI 政策與職場新挑戰

前言 這篇文章想和大家分享我對台灣 AI 政策的一些觀察。未來我還會整理其他國家的案例做比較。不過先提醒大家:這篇的資訊量不算太低,文章提及一些日常生活中不常接觸的政府計畫名稱、大筆預算金額與目標數字,乍看之下會讓人覺得很抽象。 對我來說,這些數字背後傳達的訊號很清楚──台灣政府確實願意投入大量資源在 AI 的產業發展與人才培訓。問題是,這些投資如何真正走到民眾與企業身邊?如何讓公司知道「資源在哪裡」、讓人才看見「機會在哪裡」?這條「最後一哩路」會決定政策成效,也才是和你我最相關的地方。 為了解台灣就業市場的實際需求,我偶爾會瀏覽人力銀行網站。有次看到某家公司在招聘條件中特別要求面試者在面試時分享「自己使用過哪些 AI 工具,以及如何使用」。這讓我注意到:AI 已經被視為職場的基本能力。 在日常生活中,AI 已廣泛應用於工作與個人任務。雖然部分單位仍不鼓勵員工使用,但只要有清楚的界限與正確的態度,AI 工具能有效減少重複性工作,把精力留給更有價值的任務。想像在學校寫報告,老師要求必須說明 AI 工具是怎麼幫上忙的;或在公司加班時,主管要求用 AI 快速整理資料。這些情境都不再是未來,而是現在。 我撰寫這篇文章的原因有二。首先,是因為參加 Anthropic 的 AI Fluency for Students 課程,課程內提到的 4D 概念對學生、新鮮人乃至現在於職場受到 AI 衝擊的世代都很有幫助。如果我是面試官,我會希望求職者能理解並應用這些觀念。其次,是我長期關注各國 AI 政策,想藉此分享觀察成果。這些分析大多是透過 AI 工具分析政府公開資料而得,也讓我更相信 AI 是研究工作人員的得力助手。  以技術與產業發展為核心的台灣AI政策 台灣的 AI 政策並不算落後。除了大家熟知的 DIGI+,政府陸續推動了「臺灣 AI 行動計畫」(2018–2021)以及「臺灣 AI 行動計畫 2.0」(2023–2026)。政策重點主要在產業發展與人才培育。 從預算來看,2025 年度 AI 行動計畫 2.0 編列經費最多的前三個部會為:經濟部、國科會與數位發展部;2026 年(115 年度)未核定的預算書顯示,數發部、經濟部與國科會仍是主要資源分配單位。大部分經費用於應用與普及,例如開發 AI 便利工具、藥物開發驗證平台等。 產業發展 台灣經濟結構仍以製造業為主...