星期五早上,部門內部辦了一場腦力激盪。我們談了很多題目,其中一個,是「AI治理需要哪些基礎建設」;同日下午參與另一場演講,講者剛好分享台灣 TAIDE 模型 的發展過程—談到資料和算力取得的困難,也談到工程師在面對法遵時的抗拒心理—畢竟在工程師的世界裡,「Code is Law」。 兩場活動的現場討論,因為受限於時間,都沒有深入到制度本身的限制。但在活動結束後,讓我重新思考一個核心問題: 如果AI真的是下一波技術革命,身在台灣的我們真的已經有能力參與這場革命嗎? 資料治理,不只是開放資料而已 在多次公開場合中,台灣經濟研究院的林副院長經常強調資料治理的重要性,更牽涉到以下面向: 可取得性: 是否能跨部會、跨單位、跨領域取得? 品質: 是否具備標準、結構與說明? 授權與責任: 是否清楚哪些資料能用、怎麼用、誰負責? 維運與資源: 是否有穩定預算與長期支持? 台灣的 MyData 與政府開放資料雖然在形式上有推進,但在實際應用上卻處處受限,不同主管機關不一致的安全性標準使執行人員在充滿風險與缺乏信任的環境下工作,也讓人民、企業在取得資料上處處受到限制。 回顧韓國資料治理的制度發展,他們之所以能在 2020 年推動 Data Dam 計畫、大量釋出公共與民間資料,讓銀行、 FinTech 業者介接 MyData 資料建立服務及收費 ,不只是靠政府號召,而是有一整套法令支撐著「再利用」、「匿名化後的合法使用」,以及「免責條款」。 韓國的《資料三法》( 個人資料保護法 、 資訊通信網路法 、 信用資訊法 )在整合修正後,不只清楚界定資料的再利用情境,也建立了資料去識別化的技術與法律標準,同時提供了「在遵法前提下使用資料者可免責」的條文。這讓企業、政府機關與開發者都可以在明確的框架下進行資料流通,而不用時時擔心法律風險。 台灣在法律層面卻缺乏資料可攜權及對再利用資料的明確界定與免責機制,使民間開發者在使用資料時,始終心存顧慮,不知道會不會踩到模糊地帶;也讓政府內部對資料開放裹足不前,擔心「一開放就出事」。 因此,如果台灣真心想讓 AI 成為下一階段的產業基礎,就不能忽視資料治理的法制建設—這不只是「能不能開放」,而是「開放之後,誰來保護願意開放的那一方」的信任機制。 我們缺的不是資料,而是讓資料變得「能用」的治理機制 我曾經在智慧城市展與一位國外業者談論關於台灣的政府開放資料...
詩人們總說,當我們回到童年時代生活過的一幢房子,一座花園,剎那間就會找回從前的我們。~追憶似水年華(3) p.92